深刻改变SEO行业:谷歌人工智能算法RankBrain对搜索结果重新排序
每一个竞争激烈的关键词领域都需要自我检讨
谷歌内部存在着许多核心算法,而 RankBrain 的工作就是学习这些核心算法并将其应用到不同类型的搜索结果排名中。举个例子,RankBrain 可能已经知道一个网页最重要的标志是它的标题标记(META Title)。
但是对于有着不同的分类目录的网站来说,例如 How-To(类似于百度经验,提供针对各种事情的解决方法)类的百科网站,它们有相当多的信息分类目录。在这些案例里,深度学习进程就会失效。那么谷歌是在用哪些数据进行排序的呢?答案是:随机。例如对于维基百科这样的网站,谷歌会将其排出在 RankBrain 的控制之外,以确保这个深度学习系统不会破坏当前的搜索体验。
回归分析(regression analysis)是当前 SEO 产业最大的谬误。每一次谷歌的排名算法调整时都会出现一大批预言家,通常我们这个行业里的一些数据科学家和知名公司的 CTO 们会宣称他们对谷歌的收录刷新(Google Dance:Google搜索引擎数据库每月一次的大规模升级)有自己的应对之道。典型的分析包括审阅过去几个月的排名数据事件,然后观察新的排名规则正在偏向于哪些类型的网站。
然而这些东西是确定的:
三、反向链接
在某些情况下,这种深度学习算法让 SEO 变得相对简单了。因为我们已经知道 RankBrain 和类似的技术已经和人脑不相上下了,所以规则就会很明确:没有任何空子可钻。
然而,这已经不再是谷歌的工作模式了。谷歌的机器学习和深度学习算法 RankBrain 正在以一种非常不同的方式工作。
还是举以上的例子,如果一家公司拥有一个关于鞋子的网站。我们知道 RankBrain 的深度学习系统将会尝试将这个网站的每一个方面与鞋子产业的最好和最坏的网站进行对比。因此,很自然地,这个网站的反向链接也会被拿来与那些最好的和最坏的网站的反向链接进行对比。