安防大数据时代 边缘计算与云计算还需互相补充
在过去几年里,前端摄像头采集数据,并将数据传输到后端服务器、NVR或者云端进行存储以及智能分析,这是安防行业传统的做法,但随着视频数据量迅猛递增,以及网络传输带宽的压力和成本问题,安防行业开始寻找新的解决方案,边缘计算和边缘存储的应用由此开始。
边缘计算以其安全高效的特点在当下获得众多企业和行业关注。不同于依靠多个数据中心的云计算,边缘计算是指在数据源处完成的计算,具有低时延、安全、灵活性强的特点。海康威视CEO胡扬忠曾表示:“将AI算力注入边缘,赋能边缘智能是大势所趋。”作为边缘计算应用典型之一,安防视频监控领域不容轻视。
相比于传统视频监控,边缘计算+视频监控,通过对视频图像进行预处理,去除图像冗余信息,使得部分或全部视频分析迁移到边缘处,由此降低对云中心的计算、存储和网络带宽需求,提高设备响应速度,相当于在边缘直接对视频图像进行处理分析。边缘计算弥补了云计算响应不及时、功耗高等问题,并满足了安防行业在实时业务、安全与隐私保护等方面的需要,因此被广泛应用。如果将云计算看成视频监控1.0时代的话,那么边缘计算则是2.0时代。
根据CB Insights的市场规模量化工具,到2022年,全球边缘计算市场规模预计将达到67.2亿美元。而根据Research and Markets发布的报告,边缘计算的市场规模复合年均增长率高达35.2%。当然,安防也不例外,目前来看,边缘计算正在监控领域孕育着巨大的市场。
安防业龙头海康和大华均相继发布边缘计算产品与解决方案,例如海康“明眸”系列产品、大华边缘计算节点联网方案等。此外,诸多行业领军企业也有跟进部署边缘计算技术。部分监控厂商、VC创业公司也已将深度学习技术应用于终端摄像机中,车牌识别与人脸识别等功能都已实现在前端进行。2019年安防企业还会将边缘计算拓展到哪些应用领域值得期待。
结语:边缘计算确实有效弥补了云存储的不足,但需要注意的是,纯边缘存储也有其缺陷,例如发生本地灾难时容易丢失数据、难以在站点之间进行边缘存储协作、数据被盗风险较大且无法搜索,并且由于缺乏本地IT而极难进行大规模管理等。
如是观之,在安防大数据时代,边缘计算与云计算技术还是需要互相补充,云计算提供强大的全局结构化数据推理分析和资源管控力,边缘计算则提供快速、敏捷、高效、精准的实时响应。两者共同推动安防行业迈入全新层次。