虚拟内存是计算机内存的一部分吗?
操作系统有虚拟内存与物理内存的概念。在很久以前,还没有虚拟内存概念的时候,程序寻址用的都是物理地址。程序能寻址的范围是有限的,这取决于CPU的地址线条数。比如在32位平台下,寻址的范围是2^32也就是4G。并且这是固定的,如果没有虚拟内存,且每次开启一个进程都给4G的物理内存,就可能会出现很多问题:
因为我的物理内存时有限的,当有多个进程要执行的时候,都要给4G内存,很显然你内存小一点,这很快就分配完了,于是没有得到分配资源的进程就只能等待。当一个进程执行完了以后,再将等待的进程装入内存。这种频繁的装入内存的操作是很没效率的
由于指令都是直接访问物理内存的,那么我这个进程就可以修改其他进程的数据,甚至会修改内核地址空间的数据,这是我们不想看到的
因为内存时随机分配的,所以程序运行的地址也是不正确的。
于是针对上面会出现的各种问题,虚拟内存就出来了。
一个进程运行时都会得到4G的虚拟内存。这个虚拟内存你可以认为,每个进程都认为自己拥有4G的空间,这只是每个进程认为的,但是实际上,在虚拟内存对应的物理内存上,可能只对应的一点点的物理内存,实际用了多少内存,就会对应多少物理内存。
进程得到的这4G虚拟内存是一个连续的地址空间(这也只是进程认为),而实际上,它通常是被分隔成多个物理内存碎片,还有一部分存储在外部磁盘存储器上,在需要时进行数据交换。
进程开始要访问一个地址,它可能会经历下面的过程
每次我要访问地址空间上的某一个地址,都需要把地址翻译为实际物理内存地址
所有进程共享这整一块物理内存,每个进程只把自己目前需要的虚拟地址空间映射到物理内存上
进程需要知道哪些地址空间上的数据在物理内存上,哪些不在(可能这部分存储在磁盘上),还有在物理内存上的哪里,这就需要通过页表来记录
页表的每一个表项分两部分,第一部分记录此页是否在物理内存上,第二部分记录物理内存页的地址(如果在的话)
当进程访问某个虚拟地址的时候,就会先去看页表,如果发现对应的数据不在物理内存上,就会发生缺页异常
缺页异常的处理过程,操作系统立即阻塞该进程,并将硬盘里对应的页换入内存,然后使该进程就绪,如果内存已经满了,没有空地方了,那就找一个页覆盖,至于具体覆盖的哪个页,就需要看操作系统的页面置换算法是怎么设计的了。
关于虚拟内存与物理内存的联系,下面这张图可以帮助我们巩固。
页表的工作原理如下图
我们的cpu想访问虚拟地址所在的虚拟页(VP3),根据页表,找出页表中第三条的值.判断有效位。 如果有效位为1,DRMA缓存命中,根据物理页号,找到物理页当中的内容,返回。
若有效位为0,参数缺页异常,调用内核缺页异常处理程序。内核通过页面置换算法选择一个页面作为被覆盖的页面,将该页的内容刷新到磁盘空间当中。然后把VP3映射的磁盘文件缓存到该物理页上面。然后页表中第三条,有效位变成1,第二部分存储上了可以对应物理内存页的地址的内容。
缺页异常处理完毕后,返回中断前的指令,重新执行,此时缓存命中,执行1。
将找到的内容映射到告诉缓存当中,CPU从告诉缓存中获取该值,结束。
再来总结一下虚拟内存是怎么工作的
当每个进程创建的时候,内核会为进程分配4G的虚拟内存,当进程还没有开始运行时,这只是一个内存布局。实际上并不立即就把虚拟内存对应位置的程序数据和代码(比如.text .data段)拷贝到物理内存中,只是建立好虚拟内存和磁盘文件之间的映射就好(叫做存储器映射)。这个时候数据和代码还是在磁盘上的。当运行到对应的程序时,进程去寻找页表,发现页表中地址没有存放在物理内存上,而是在磁盘上,于是发生缺页异常,于是将磁盘上的数据拷贝到物理内存中。
另外在进程运行过程中,要通过malloc来动态分配内存时,也只是分配了虚拟内存,即为这块虚拟内存对应的页表项做相应设置,当进程真正访问到此数据时,才引发缺页异常。
可以认为虚拟空间都被映射到了磁盘空间中(事实上也是按需要映射到磁盘空间上,通过mmap,mmap是用来建立虚拟空间和磁盘空间的映射关系的)
利用虚拟内存机制的优点
既然每个进程的内存空间都是一致而且固定的(32位平台下都是4G),所以链接器在链接可执行文件时,可以设定内存地址,而不用去管这些数据最终实际内存地址,这交给内核来完成映射关系
当不同的进程使用同一段代码时,比如库文件的代码,在物理内存中可以只存储一份这样的代码,不同进程只要将自己的虚拟内存映射过去就好了,这样可以节省物理内存
在程序需要分配连续空间的时候,只需要在虚拟内存分配连续空间,而不需要物理内存时连续的,实际上,往往物理内存都是断断续续的内存碎片。这样就可以有效地利用我们的物理内存
更多相关知识,请访问:PHP中文网!以上就是虚拟内存是计算机内存的一部分吗?的详细内容,更多请关注小潘博客其它相关文章!