MySQL 快速创建千万级测试数据
备注: 此文章的数据量在100W,如果想要千万级,调大数量即可,但是不要大量使用rand() 或者uuid() 会导致性能下降背景在进行查询操作的性能测试或者sql优化时,我们经常需要在线下环境构建大量的基础数据供我们测试,模拟线上的真实环境。创建测试数据的方式1. 编写代码,通过代码批量插库(本人使用过,步骤太繁琐,性能不高,不推荐)2. 编写存储过程和函数执行(本文实现方式1)3. 临时数据表方式执行 (本文实现方式2,强烈推荐该方式,非常简单,数据插入快速,100W,只需几秒)4. 一行一行手动插入,(WTF,去死吧)创建基础表结构CREATE TABLE `t_user` (`id` int(11) NOT NULL AUTO_INCREMENT,`c_user_id` varchar(36) NOT NULL DEFAULT '',`c_name` varchar(22) NOT NULL DEFAULT '',`c_province_id` int(11) NOT NULL,`c_city_id` int(11) NOT NULL,`create_time` datetime NOT NULL,PRIMARY KEY (`id`),KEY `idx_user_id` (`c_user_id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;方式1: 采用存储过程和内存表创建内存表利用 MySQL 内存表插入速度快的特点,我们先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中CREATE TABLE `t_user_memory` (`id` int(11) NOT NULL AUTO_INCREMENT,`c_user_id` varchar(36) NOT NULL DEFAULT '',`c_name` varchar(22) NOT NULL DEFAULT '',`c_province_id` int(11) NOT NULL,`c_city_id` int(11) NOT NULL,`create_time` datetime NOT NULL,PRIMARY KEY (`id`),KEY `idx_user_id` (`c_user_id`)) ENGINE=MEMORY DEFAULT CHARSET=utf8mb4;创建函数和存储过程# 创建随机字符串和随机时间的函数mysql> delimiter $$mysql> CREATE DEFINER=`root`@`%` FUNCTION `randStr`(n INT) RETURNS varchar(255) CHARSET utf8mb4->DETERMINISTIC-> BEGIN->DECLARE chars_str varchar(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';->DECLARE return_str varchar(255) DEFAULT '' ;->DECLARE i INT DEFAULT 0;->WHILE i < n DO->SET return_str = concat(return_str, substring(chars_str, FLOOR(1 + RAND() * 62), 1));->SET i = i + 1;->END WHILE;->RETURN return_str;-> END$$Query OK, 0 rows affected (0.00 sec)mysql> CREATE DEFINER=`root`@`%` FUNCTION `randDataTime`(sd DATETIME,ed DATETIME) RETURNS datetime->DETERMINISTIC-> BEGIN->DECLARE sub INT DEFAULT 0;->DECLARE ret DATETIME;->SET sub = ABS(UNIX_TIMESTAMP(ed)-UNIX_TIMESTAMP(sd));->SET ret = DATE_ADD(sd,INTERVAL FLOOR(1+RAND()*(sub-1)) SECOND);->RETURN ret;-> END $$mysql> delimiter ;# 创建插入数据存储过程mysql> CREATE DEFINER=`root`@`%` PROCEDURE `add_t_user_memory`(IN n int)-> BEGIN->DECLARE i INT DEFAULT 1;->WHILE (i <= n) DO->INSERT INTO t_user_memory (c_user_id, c_name, c_province_id,c_city_id, create_time) VALUES (uuid(), randStr(20), FLOOR(RAND() * 1000), FLOOR(RAND() * 100), NOW());->SET i = i + 1;->END WHILE;-> END-> $$Query OK, 0 rows affected (0.01 sec)调用存储过程mysql> CALL add_t_user_memory(1000000);ERROR 1114 (HY000): The table 't_user_memory' is full出现内存已满时,修改 max_heap_table_size 参数的大小,我使用64M内存,插入了22W数据,看情况改,不过这个值不要太大,默认32M或者64M就好,生产环境不要乱尝试从内存表插入普通表mysql> INSERT INTO t_user SELECT * FROM t_user_memory;Query OK, 218953 rows affected (1.70 sec)Records: 218953Duplicates: 0Warnings: 0方式2: 采用临时表创建临时数据表tmp_tablemysql> INSERT INTO t_user SELECT * FROM t_user_memory;Query OK, 218953 rows affected (1.70 sec)Records: 218953Duplicates: 0Warnings: 0用 python或者bash 生成 100w 记录的数据文件(python瞬间就会生成完)python(推荐): python -c "for i in range(1, 1+1000000): print(i)" > base.txt导入数据到临时表tmp_table中mysql> load data infile '/Users/LJTjintao/temp/base.txt' replace into table tmp_table;Query OK, 1000000 rows affected (2.55 sec)Records: 1000000Deleted: 0Skipped: 0Warnings: 0千万级数据 20秒插入完成
以临时表为基础数据,插入数据到t_user中,100W数据插入需要10.37smysql> INSERT INTO t_user->SELECT->id,->uuid(),->CONCAT('userNickName', id),->FLOOR(Rand() * 1000),->FLOOR(Rand() * 100),->NOW()->FROM->tmp_table;Query OK, 1000000 rows affected (10.37 sec)Records: 1000000Duplicates: 0Warnings: 0更新创建时间字段让插入的数据的创建时间更加随机UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year);Query OK, 1000000 rows affected (5.21 sec)Rows matched: 1000000Changed: 1000000Warnings: 0mysql> UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year);Query OK, 1000000 rows affected (4.77 sec)Rows matched: 1000000Changed: 1000000Warnings: 0mysql> select * from t_user limit 30;+----+--------------------------------------+----------------+---------------+-----------+---------------------+| id | c_user_id| c_name| c_province_id | c_city_id | create_time|+----+--------------------------------------+----------------+---------------+-----------+---------------------+|1 | bf5e227a-7b84-11e9-9d6e-751d319e85c2 | userNickName1|84 |64 | 2015-11-13 21:13:19 ||2 | bf5e26f8-7b84-11e9-9d6e-751d319e85c2 | userNickName2|967 |90 | 2019-11-13 20:19:33 ||3 | bf5e2810-7b84-11e9-9d6e-751d319e85c2 | userNickName3|623 |40 | 2014-11-13 20:57:46 ||4 | bf5e2888-7b84-11e9-9d6e-751d319e85c2 | userNickName4|140 |49 | 2016-11-13 20:50:11 ||5 | bf5e28f6-7b84-11e9-9d6e-751d319e85c2 | userNickName5|47 |75 | 2016-11-13 21:17:38 ||6 | bf5e295a-7b84-11e9-9d6e-751d319e85c2 | userNickName6|642 |94 | 2015-11-13 20:57:36 ||7 | bf5e29be-7b84-11e9-9d6e-751d319e85c2 | userNickName7|780 |7 | 2015-11-13 20:55:07 ||8 | bf5e2a4a-7b84-11e9-9d6e-751d319e85c2 | userNickName8|39 |96 | 2017-11-13 21:42:46 ||9 | bf5e2b58-7b84-11e9-9d6e-751d319e85c2 | userNickName9|731 |74 | 2015-11-13 22:48:30 || 10 | bf5e2bb2-7b84-11e9-9d6e-751d319e85c2 | userNickName10 |534 |43 | 2016-11-13 22:54:10 || 11 | bf5e2c16-7b84-11e9-9d6e-751d319e85c2 | userNickName11 |572 |55 | 2018-11-13 20:05:19 || 12 | bf5e2c70-7b84-11e9-9d6e-751d319e85c2 | userNickName12 |71 |68 | 2014-11-13 20:44:04 || 13 | bf5e2cca-7b84-11e9-9d6e-751d319e85c2 | userNickName13 |204 |97 | 2019-11-13 20:24:23 || 14 | bf5e2d2e-7b84-11e9-9d6e-751d319e85c2 | userNickName14 |249 |32 | 2019-11-13 22:49:43 || 15 | bf5e2d88-7b84-11e9-9d6e-751d319e85c2 | userNickName15 |900 |51 | 2019-11-13 20:55:26 || 16 | bf5e2dec-7b84-11e9-9d6e-751d319e85c2 | userNickName16 |854 |74 | 2018-11-13 22:07:58 || 17 | bf5e2e50-7b84-11e9-9d6e-751d319e85c2 | userNickName17 |136 |46 | 2013-11-13 21:53:34 || 18 | bf5e2eb4-7b84-11e9-9d6e-751d319e85c2 | userNickName18 |897 |10 | 2018-11-13 20:03:55 || 19 | bf5e2f0e-7b84-11e9-9d6e-751d319e85c2 | userNickName19 |829 |83 | 2013-11-13 20:38:54 || 20 | bf5e2f68-7b84-11e9-9d6e-751d319e85c2 | userNickName20 |683 |91 | 2019-11-13 20:02:42 || 21 | bf5e2fcc-7b84-11e9-9d6e-751d319e85c2 | userNickName21 |511 |81 | 2013-11-13 21:16:48 || 22 | bf5e3026-7b84-11e9-9d6e-751d319e85c2 | userNickName22 |562 |35 | 2019-11-13 20:15:52 || 23 | bf5e3080-7b84-11e9-9d6e-751d319e85c2 | userNickName23 |91 |39 | 2016-11-13 20:28:59 || 24 | bf5e30da-7b84-11e9-9d6e-751d319e85c2 | userNickName24 |677 |21 | 2016-11-13 21:37:15 || 25 | bf5e3134-7b84-11e9-9d6e-751d319e85c2 | userNickName25 |50 |60 | 2018-11-13 20:39:20 || 26 | bf5e318e-7b84-11e9-9d6e-751d319e85c2 | userNickName26 |856 |47 | 2018-11-13 21:24:53 || 27 | bf5e31e8-7b84-11e9-9d6e-751d319e85c2 | userNickName27 |816 |65 | 2014-11-13 22:06:26 || 28 | bf5e324c-7b84-11e9-9d6e-751d319e85c2 | userNickName28 |806 |7 | 2019-11-13 20:17:30 || 29 | bf5e32a6-7b84-11e9-9d6e-751d319e85c2 | userNickName29 |973 |63 | 2014-11-13 21:08:09 || 30 | bf5e3300-7b84-11e9-9d6e-751d319e85c2 | userNickName30 |237 |29 | 2018-11-13 21:48:17 |+----+--------------------------------------+----------------+---------------+-----------+---------------------+30 rows in set (0.01 sec)更多MySQL相关技术文章,请访问MySQL教程栏目进行学习!以上就是MySQL 快速创建千万级测试数据的详细内容,更多请关注小潘博客其它相关文章!