重庆小潘seo博客

当前位置:首页 > 重庆网络推广 > 百度知道 >

百度知道

可靠性预计公式(举例产品可靠性预计方法)

时间:2021-03-26 17:20:05 作者:重庆seo小潘 来源:51开业
原标题:可靠性预计公式(举例产品可靠性预计方法) 我们知道产品的可靠性是产品在规定条件下和规定时间内,完成规定功能的能力。可靠性的概率度称为产品的可靠度。 可靠性贯

原标题:可靠性预计公式(举例产品可靠性预计方法)

我们知道产品的可靠性是产品在规定条件下和规定时间内,完成规定功能的能力。可靠性的概率度称为产品的可靠度。

可靠性贯穿于产品的整个生命周期,从产品的设计、制造、使用、维护的个阶段都有一个可靠性问题。但首先要抓好可靠性设计。产品可靠性的定量指标应该在设计过程就得到落实,为产品的固有可靠性奠定良好的基础。反之,一个忽视可靠性设计的产品,必然是“先天不足,后患无穷”,在使用过程中大部会暴露出一系列不可靠问题。

一、可靠性设计的主要技术

1、规定定性定量的可靠性要求:

有了可靠性指标,开展可靠性设计才有目标,才能对开发的产品可靠性进行考核,避免产品在顾客使用中因故障频繁而使开发商和顾客利益受到损失。最常用的可靠性指标有平均故障间隔时间(mtbf)和使用寿命。

2、建立可靠性模型:

建立产品系统级、分系统级的可靠性模型,可用于定量分配、估计和评价产品的可靠性。

可靠性模型包括可靠性方框图和可靠性数学模型。对于复杂产品的一个或多个功能模式,用方框图表示各组成部分的故障或它们的组合。方框图分为串联模型和并联模型。

做法就是:预计或估计所设计产品可靠性模型的串联模型和并联模型框图,利用数学公式求定量求出该产品的可靠度与故障率,最后推导出可靠性指标。

3、可靠性分配:

就是将产品总的可靠性的定量要求分配到规定的产品层次。通过分配使整体和部分的可靠性定量要求协调一致。它是一个由整体到局部,由上到下的分解过程。可靠分配有很多方法,如评分分配法、比例分配法等。下面我们以评分分配法举例说明:

评分分配法是一种常用的分配方法。在产品可靠性数据缺乏的情况下,可以请熟悉产品、有工程实际经验的专家,按照影响产品可靠性的几种因素既复杂度、技术成熟度、重要度及环境条件,给每一种因素打分(1—10分之间)。

复杂度:根据组成分系统的元部件数量以及它们组装调试的难易程度评定。最复杂的评10分,最简单的评1分。

技术成熟度:根据分系统的技术水平和成熟程度评定。技术成熟度低平10分,技术成熟度高的评1分

重要度:根据分系统的得要性评定。重要性最低的评10分,重要性最高的评1分。

环境条件:根据分系统所处环境条件评定。经受恶劣条件的评10分,环境条件最好的评1分。

利用数学公式定量的算出可靠性指标平均故障间隔时间(mtbf),这样就可以利用评分分配法将可靠性指标分配到各部件中去了。

4、可靠性预计:

可靠性预计是在设计阶段对系统可靠性进行定量的估计,是根据相似产品可靠性数据、系统的构成和结构特点、系统的工作环境等因素估计组成系统的部件及系统的可靠性。可靠性预计结果可以与要求的可靠性相比较,估计设计是否满足要求,通过可靠性预计还可以发现组成系统的各单位中故障率高的单元,找到薄弱环节,加以改进。可靠性预计有很多方法,如元器件计数法、应力分析法、上下限法等。

元器件计数法适用于产品设计开发的早期。它的优点是不需要详尽了解每个元器件的应用及它们之间的逻辑关系就可以迅速估算出产品的故障率,但预计结果比较粗糙。

应力分析法适用于电子产品详细设计阶段,已具备了详细的文件清单、电应力比、环境温度等信息,这种方法比元器件计数法的结果要准确些。应力分析法分三步求出。第一步先求出各种元器件的工作故障率;第二步求产品的工作故障率;第三步求出产品的可靠性指标平均故障间隔时间(mtbf)。

5、可靠性设计准则:

是把已有的、相似产品的工程经验总结起来,使其条理化、系统化、科学化,成为设计人员进行可靠性设计所遵循的原则和应满足的要求。

可靠性设计准则一般都是针对某种产品的,但也可以把各种产品的可靠性设计准则的共性内容,综合成某种类型的可靠性设计准则,如直升机可靠性设计准则等。当然,这些共性可靠性设计准则经剪裁、增补之后又可成为具体产品专用的可靠性设计准则。

可靠性设计准则一般应根据产品类型、重要程度、可靠性要求、使用特点和相似产品可靠性设计经验以及有关的标准、规范来制定。

6、耐环境与三防设计:

三防指的是防潮湿、防盐雾、防霉菌。潮湿、盐雾和霉菌对电子设备有很大影响,它们会使机内凝聚水汽,降低绝缘电阻,元件的介电常数和介质损耗增大,塑料变形,金属腐蚀,材料变质,使所有有机材料和部分无机材料受到霉菌的侵蚀而降低强度,从而使设备的寿命和可靠性受到影响。

三防设计的主要途径和方法分列于下:

①防潮其方法包括:憎水处理;浸渍处理;灌封处理;塑料封装;金属封装。

②防盐雾其方法包括:电镀;表面涂敷;降低不同金属接触点问的电位差。 ③防霉菌其方法包括:密封;放置干燥剂;控制大气条件,降低环境相对湿度;选用不易长霉的材料;紫外线辐照;表面涂敷防霉剂、防霉漆;在密封设备中充以高浓度臭氧灭菌。

产品使用环境对产品可靠性的影响十分明显。因此,在产品开发时应开展抗振、抗冲击、抗噪音、防潮、防霉、防腐设计等。

7、元器件选用与降额设计:

电子元器件是完成产品规定功能而不能再分割的电路基本单元,是电子产品可靠性的基础。要保证产品可靠性对所使用的元器件进行严格控制是极为重要的一项工作。制定并实施元器件大纲是控制元器件的选择和使用的有效途径。

选用元器件一般有二条原则:

①尽量选用经过质量认证或认定,并经现场使用证明质量良好,可靠性高的通用元器件。对于新研制的新型元器件则必须经过严格的质量和可靠性试验后方能使用。

②必须根据不同电路的工作参数和整机的使用环境条件,选用能满足这些要求的相应元器件,以充分发挥元器件应有的功能提高元器件的使用可靠性。 各种电子元器由于它们的材料、结构、设计和制造工艺等方面的原因,对外应力(包括电应力、热应力等)都有一定的耐受强度。当外应力超过元器件本身的应力承受强度(即额定应力)时,元器件就会损坏 。

降额就是使元器件在低于其额定的应力条件下工作。降额能提高元器件和设备的可靠性。这是因为绝大部分元器件的失效率随着所施加的热应力和电应力的降低而下降。但是降额要适当,既不能使降额不足,对某些元件(如电解电容等)也不能让降额过了头,且要与体积、重量、成本综合考虑。

8、电磁兼容性设计:

电子设备或系统总是处在电磁环境中工作,一是自然界造成的电磁环境,如雷电、宇宙射线、地磁辐射等;二是周围其他电子设备造成的电磁环境,如家用电器、工业电器、仪器设备、雷达、发射台、输电网等;三是自身造成的电磁环境,如变压器、扬声器、电路的非线性失真、本振辐射、自激振荡及各种信号馈线等形成的电场、磁场、电磁场环境等。设备处在这些电磁环境中,将会受到电的、磁的或电磁的干扰。因此,能否适应这种公共的电磁环境,使其仍然能正常工作,就成为可靠性设讨必须考虑的问题。如果所设计的设备缺少电磁兼容能力,就会在电磁干扰下,不断发生暂时的或永久的故障,降低了设备的可靠性。 电磁干扰通常分为外来干扰和自身干扰两大类:

常见的外来干扰有:电吹风、手电钻、汽车发动机、电焊机等启动时,由于电机电刷的接触,汽车发动机点火系统的放电,及注塑机继电器触点的接触而产生的电火花等。这些电火花频率高,高次谐波多,脉宽窄,幅度大,由此而产生的高频辐射会使电子设备的正常工作受到影响。 常见的自身干扰有:变压器的漏磁、电路的自激振荡、电路的非线性失真或高速开关电路所产生的高次谐波的辐射等。

电磁干扰的途径一般有传导、近场感应和远场辐射三种方式。

干扰通过于扰源和被干扰电路之间的公共阻抗而引人被干扰电路的方式称为传导干扰。

当干扰源和被干扰物相距较近时(小于λ/2π, 其中λ为干扰波的波长),干扰通过电容或电感性耦合而引人被干扰电路的方式称为近场感应。

当干扰源和被干扰物相距较远(大于λ/2π)时, 干扰由电磁辐射方式引入被干扰电路就称为远场辐射。 近场感应和远场辐别的区别取决于干扰源和被干扰电路 间的距离和干扰源的频率。低频时波长较长,故各种干扰大多属于近场感应。而高频则波长较短,尤其在特高频段多属远场辐射。设备自身产生的干扰也有不少是远场辐射,如本振辐射,非线性失真,自激振荡等。

电磁兼容性设计的基本技术和方法是:

①抑制干扰源具体做法为减少变压器漏磁、减少无用辐射、减少非线性失真、抑制自激等。

②切断传递途径具体做法为合理、良好接地,屏蔽及加滤波措施等。 对于变压器的漏磁和高频电路的辐射干扰,多采用屏蔽的方法以切断干扰的传递。对容易受外来电、磁干扰的仪器设备,也可采用机壳屏蔽。

对我们产品来说,电磁兼容设计是很重要的。它包括静电抗扰性,浪涌及雷击抗扰性,电源波动及瞬间跌落抗扰性,射频电磁场辐射抗扰性等。

9、热设计:

电子元器件及电子设备的可靠性与温度的关系极为密切。例如,当环境温度升高时,就会使晶体管内部材料的物理和化学反应的速率加快,从而使晶体管的性能参数(电流放大系数hfe、反向饱和电流is 和噪声系数nf 等)随温的升高而产生漂移;额定功率降低,热击穿概率上升。温度对电容器的可靠性也有极大影响,当使用温度超过电容器的额定温度时,温度每提高10℃ 电容器的使用寿命将下降一半。

此外,过高的温度还会使设备内的塑料件变形、变硬、变脆、老化,使材料的绝缘性能下降等。因此为了提高产品的可靠性,就必须充分重视并搞好热设计。

热设计的基本准则可归纳为以下四点:

①降低热源 电子产品所消耗的功率绝大部分被转化为热能,故为了降低设备的温升就应在保证设备完成规定功能的前提下,尽量降低设备的功耗。

②合理布局 把设备内的发热元件均匀地分散于各个部位,防止设备内部出现局部过热。

③采取有效的散热措施 所谓散热,就是采取一定的传热方式,把发热体的热量散发出去。

传热有三种基本形式,即传导、对流和辐射,因此,要提高散热效果可以从以下几方面着手:

第一,充分利用传导散热。应充分利用设备的各个部分(如结构件,印制板和引线等)作为传导通路,对发热量较高的大中功率管,可装在散热器上,让发热体的热量先传导至散热器,再通过对流、辐射把热量从散热器传至周围环境。

第二,加强对流。合理设计通风孔,进风口和出风口应开在温差最大的两处。对自然通风的设备,进风口应开在设备的底部,出风口应尽量高,以形成较强的拔风效应。对功率较大的设备还应采用强迫风冷措施,以加强对流效果。

第三,减小辐射热阻。要扩大辐射面积,提高发热体黑度。

第四,对热敏元件隔热。热敏元件对温度变化非常敏感,如晶体管、铁氧体磁性元件、石英晶体、槽路电容等,在热的影响下,或是电参数急剧变化使设备出现性能失效,或是元件失效率升高使设备故障增多。故应对热敏元件进行隔热。

10、漂移设计

电子元器件的性能参数在应力作用下或在贮存条件下将随时间而发生缓慢的变化,如果参数变化到一定限度,使设备或系统不能完成规定的功能,则发生漂移失效。因此在设计阶段就要考虑到参数的漂移,要分析哪些元器件对设备性能的影响最敏感,并要了解各种元器件的参数漂移特性。设计电路时,选取怎样的参数组合能使电路性能最稳定,井要考虑在设备的任务周期内应取怎样的允许差才不致于出现漂移失效,而又最为经济合理等。

漂移设计的常用设计技术和方法有:均方根偏差设计法、最坏情况设计法、蒙特卡罗法和正交优化法等。

11、冗余设计

对于复杂和重要的电子设备或系统,往往采用冗余设计来进一步提高可靠性。所谓冗余设计,就是为完成规定的功能而额外附加所需的装置或手段,即使其中某一部分出现了故障,但作为整体仍能正常工作的一种设计.

冗余设计虽能大幅度提高系统的可靠性、但要增加设备的体积、重量、费用和复杂度。因此,除了重要的关键设备,对于一般产品不轻易采用冗余技术。冗余的方法很多,最简单的是并联装置, 此外,冗余的方法尚有串并联或并串联混合装置、多数表决装置、等待装置等。

12、维修性设计

电子系统或设备一般都是可修复产品。对这类产品不但要求少出故障,而且要求一旦出了故障时能很快修复。只有故障少、修复快,才能有效地提高设备的利用率。维修性设计一般从以下几个方面考虑:维修时易装易拆;维修工具可靠;易检查易校正易恢复;互换性好;安全、经济、快速等。

具体可归纳为如下12条设计准则:

(1) 结构简单,零、部、整件采用快速解脱装置,如采用抽屉式结构等,易拆、易装、易换。

(2) 有分机故障隔离措施。

(3) 尽量采用标准件、通用件。

(4) 采用模块化设计以利故障检查和拆换。

(5) 推行故障诊断设计,使设备便于迅速、准确地判断出故障的结构特征。

(6) 需要经常检查、维修、拆装、调换之处需设计成便于操作者接近和操作。

(7) 应使维修人员能见到全部零件。

(8) 应使设计的产品尽量减少维修工具。

(9) 插头、插脚、连接线等都应有明显标记,容易辨别。

(10) 宁用少量大的紧固件,不用多量小的紧固件。

(11) 以快锁构件代替螺钉、螺母。

(12) 对维修人员要能保证人身安全。

以上就是我们设计产品可靠性设计的一些主要技术,如果在设计时考周全,那么研发出来的产品可靠性水平将会大大的提高。

二、可靠性试验方法:

评价分析产品可靠性而进行的试验称为可靠性试验。可靠性试验目的通常有如下几方面:

1. 在研发阶段用以暴露试制产品各方面的缺陷,评价产品可靠性达到预定指标的情况;

2. 生产阶段为监控生产过程提供信息;

3. 对定型产品进行可靠性鉴定或验收;

4. 暴露和分析产品在不同环境和应力条件下的失效规律及有关的失效模式和失效机理;

5. 为改进产品可靠性,制定和改进可靠性试验方案,为用户选用产品提供依据。

对于不同的产品,为了达到不同的目的,可以选择不同的可靠性试验方法。

可靠性预计公式(举例产品可靠性预计方法)

可靠性试验有多种分类方法.

1. 如以环境条件来划分,可分为包括各种应力条件下的模拟试验和现场试验;

2. 以试验项目划分,可分为环境试验、寿命试验、加速试验和各种特殊试验;

3. 若按试验目的来划分,则可分为筛选试验、鉴定试验和验收试验;

4. 若按试验性质来划分,也可分为破坏性试验和非破坏性试验两大类。

5. 但通常惯用的分类法,是把它归纳为五大类: a. 环境试验 b. 寿命试验 c. 筛选试验 d. 现场使用试验 e. 鉴定试验

a. 环境试验: 是考核产品在各种环境(振动、冲击、离心、温度、热冲击、潮热、盐雾、低气压等)条件下的适应能力,是评价产品可靠性的重要试验方法之一。

b. 寿命试验: 是研究产品寿命特征的方法,这种方法可在实验室模拟各种使用条件来进行。寿命试验是可靠性试验中最重要最基本的项目之一,它是将产品放在特定的试验条件下考察其失效(损坏)随时间变化规律。通过寿命试验,可以了解产品的寿命特征、失效规律、失效率、平均寿命以及在寿命试验过程中可能出现的各种失效模式。如结合失效分析,可进一步弄清导致产品失效的主要失效机理,作为可靠性设计、可靠性预测、改进新产品质量和确定合理的筛选、例行(批量保证)试验条件等的依据。如果为了缩短试验时间可在不改变失效机理的条件下用加大应力的方法进行试验,这就是加速寿命试验。通过寿命试验可以对产品的可靠性水平进行评价,并通过质量反馈来提高新产品可靠性水平。

c. 筛选试验: 是一种对产品进行全数检验的非破坏性试验。其目的是为选择具有一定特性的产品或剔早期失效的产品,以提高产品的使用可靠性。产品在制造过程中,由于材料的缺陷,或由于工艺失控,使部分产品出现所谓早期缺陷或故障,这些缺陷或故障若能及早剔除,就可以保证在实际使用时产品的可靠性水平。

可靠性筛选试验的特点是: a. 这种试验不是抽样的,而是100%试验; b. 该试验可以提高合格品的总的可靠性水平,但不能提高产品的固有可靠性,即不能提高每个产品的寿命; c. 不能简单地以筛选淘汰率的高低来评价筛选效果。淘汰率高,有可能是产品本身的设计、元件、工艺等方面存在严重缺陷,但也有可能是筛选应力强度太高。淘汰率低,有可能产品缺陷少,但也可能是筛选应力的强度和试验时间不足造成的。通常以筛选淘汰率q和筛选效果β值来评价筛选方法的优劣:合理的筛选方法应该是β 值较大,而q值适中。

d。现场使用试验:上述各种试验都是通过模拟现场条件来进行的。模拟试验由于受设备条件的限制,往往只能对产品施加单一应力,有时也可以施加双应力,这与实际使用环境条件有很大差异,因而未能如实地、全面地暴露产品的质量情况。现场使用试验则不同,因为它是在使用现场进行,故最能真实地反映产品的可靠性问题,所获得的数据对于产品的可靠性预测、设计和保证有很高价值。对制定可靠性试验计划、验证可靠性试验方法和评价试验精确性,现场使用试验的作用则更大。

e.鉴定试验: 是对产品的可靠性水平进行评价时而做的试验。它是根据抽样理论制定出来的抽样方案。在保证生产者不致使质量符合标准的产品被拒收的条件下进行鉴定试验。

产品的可靠性是设计出来的,生产出来的,也是试验和管理出来的。以上就是产品可靠性设计技术和产品可靠性试验方法的主要内容,有很多定义性、程序性的东西,都是通过大量的质量方面的书籍罗列整理所得,希望能给从事设计产品和从事质量岗位的同事有所帮助。